FIBRATIONS OF STRICT n-GROUPOIDS

MANUEL ARAÚJO

Definition 0.1. A k-morphism $f: x \to y$ in a strict n-category is a k-equivalence if there exists $g: y \to x$ and (k+1)-equivalences $f \circ g \to id_y$, $g \circ f \to id_x$.

Definition 0.2. A strict n-groupoid is a strict n-category all of whose k-morphisms are k-equivalences.

Notation 0.3. $\theta^{(k)}$ is the free walking k-cell, denoted O^k in [1]. I^k is the free walking coherent k-equivalence, denoted P^{k-1} in [1].

Definition 0.4. A map $f: X \to Y$ between strict n-groupoids is a **folk fibration** if it is a fibration in the folk model structure on strict n-categories of [1]. This means every lifting problem of the form

$$\begin{array}{ccc}
\theta^{(k)} & \longrightarrow & X \\
\downarrow & & \downarrow f \\
I^{k+1} & \longrightarrow & Y
\end{array}$$

has a solution.

Definition 0.5. A map $f: X \to Y$ between strict n-groupoids is a **fibration** if every lifting problem of the form

$$\begin{array}{ccc}
\theta^{(k)} & \longrightarrow & X \\
\downarrow & & \downarrow f \\
\theta^{(k+1)} & \longrightarrow & Y
\end{array}$$

has a solution.

Lemma 0.6. Let X be an n-category and $u: x \to x'$ a k-equivalence in X. Then there exists $v: x \to x'$, which admits an extension

$$\begin{array}{ccc}
\theta^{(k)} & \xrightarrow{v} X \\
\downarrow & & \downarrow \\
I^k & & \end{array},$$

and a (k+1)-equivalence $u \to v$.

Proof. The existence of v with the extension property is guaranteed by Lemma 18 in [1]. By examining the proof, one sees that it actually also provides the equivalence $u \to v$.

Proposition 0.7. Let X, Y be n-groupoids and $f: X \to Y$ a folk fibration. Then f is a fibration.

Proof. Consider the lifting problem

$$\begin{array}{ccc} \theta^{(k)} & \longrightarrow & X \\ \downarrow & ? & \downarrow f \\ \theta^{(k+1)} & \longrightarrow & Y. \end{array}$$

Let $v \simeq u$ such that the extension

exists. Because f is a folk fibration, we can solve the lifting problem

$$\begin{array}{ccc}
\theta^{(k)} & \longrightarrow & X \\
\downarrow & & \downarrow f \\
I^{k+1} & \longrightarrow & Y.
\end{array}$$

Now we restrict this lift to $\theta^{(k+1)}$ to obtain

$$\begin{array}{ccc}
\theta^{(k)} & \xrightarrow{\tilde{v}} & X \\
\downarrow & & \downarrow f \\
\theta^{(k+1)} & \xrightarrow{\tilde{v}} & Y.
\end{array}$$

Let $\varphi: v \to u$ be the above mentioned equivalence. By induction, we can solve the following lifting problem.

$$\begin{array}{ccc} \theta^{(k+1)} & \stackrel{\tilde{v}}{\longrightarrow} & X \\ \downarrow & & \downarrow f \\ \theta^{(k+2)} & \stackrel{\varphi}{\longrightarrow} & Y. \end{array}$$

The lift now includes a lift of $u = t(\varphi)$.

References

[1] Yves Lafont, François Métayer, and Krzysztof Worytkiewicz. A folk model structure on omegacat. *Advances in Mathematics*, 224(3):1183–1231, 2010.